Remez Algorithm - Source Code

This page displays the source code of key functions and methods used in the Remez algorithm implementation.
initializeCFRemezNodes(targetFunc, a, b, numNodes) {
    if (!Number.isFinite(a) || !Number.isFinite(b) || a >= b || numNodes < 2) {
        throw new Error(`Invalid inputs: a=${a}, b=${b}, numNodes=${numNodes}`);
    }
    const n = numNodes - 1; // degree of approximation
    const numSamples = Math.max(10 * n, 127); // More samples for stability
    console.log('numSamples:', numSamples, 'numNodes:', numNodes, 'degree:', n);
    // Step 1: Compute Chebyshev coefficients more robustly
    const chebCoeffs = new Array(2 * n + 1).fill(0);
    // Use Chebyshev-Gauss-Lobatto nodes for better accuracy
    for (let k = 0; k < numSamples; k++) {
        const t = Math.cos(Math.PI * k / (numSamples - 1)); // t in [-1, 1]
        const x = (b - a) * (t + 1) / 2 + a; // map to [a, b]
        const y = targetFunc(x);
        if (!Number.isFinite(y)) {
            console.warn(`Non-finite function value at x=${x}`);
            continue;
        }
        // Compute Chebyshev coefficients using discrete cosine transform
        for (let j = 0; j < 2 * n + 1 && j < numSamples; j++) {
            const Tj = this.chebyshevPolynomial(j, t);
            chebCoeffs[j] += y * Tj;
        }
    }
    // Proper DCT normalization for Chebyshev coefficients
    for (let j = 0; j < chebCoeffs.length; j++) {
        if (j === 0) {
            chebCoeffs[j] /= numSamples; // c_0 normalization
        } else {
            chebCoeffs[j] *= 2.0 / numSamples; // c_k normalization for k > 0
        }
        // Clean up small coefficients
        if (Math.abs(chebCoeffs[j]) < 1e-14) {
            chebCoeffs[j] = 0;
        }
    }
    console.log('Chebyshev coefficients:', chebCoeffs.slice(0, Math.min(10, chebCoeffs.length)));
    // Step 2: Set up CF approximation problem
    // For CF approximation, we need to solve a different eigenvalue problem
    // We construct a Toeplitz matrix from the Chebyshev coefficients
    let cfCoefficients;
    let cfApprox;
    try {
        // Method 1: Direct coefficient truncation (simpler, often more stable)
        cfCoefficients = chebCoeffs.slice(0, n + 1);
        // Create the CF approximation function
        cfApprox = (x) => {
            // Transform x from [a,b] to [-1,1]
            const t = 2 * (x - a) / (b - a) - 1;
            let result = cfCoefficients[0]; // T_0 = 1, use coefficient directly
            for (let k = 1; k < cfCoefficients.length; k++) {
                result += cfCoefficients[k] * this.chebyshevPolynomial(k, t);
            }
            return result;
        };
        console.log('CF coefficients (truncated):', cfCoefficients);
    } catch (error) {
        console.error('CF coefficient computation failed:', error);
        // Fallback: Use Chebyshev interpolation nodes
        const chebNodesFallback = Array.from(
            { length: numNodes },
            (_, k) => (b - a) * (Math.cos(Math.PI * k / (numNodes - 1)) + 1) / 2 + a
        ).sort((x, y) => x - y);
        return {
            coeffs: new Array(n + 1).fill(0),
            nodes: chebNodesFallback,
            cfApprox: x => targetFunc(x),
            maxError: Infinity
        };
    }
    // Step 3: Find alternating extrema more robustly
    const errorFunc = (x) => {
        const target = targetFunc(x);
        const approx = cfApprox(x);
        return target - approx;
    };
    // Sample the error function to check quality
    /*const testPoints = remMath.linspace(a, b, 50);
    const errors = testPoints.map(x => ({
        x: x,
        target: targetFunc(x),
        approx: cfApprox(x),
        error: errorFunc(x)
    }));
    console.log('Error function samples (first 5):', errors.slice(0, 5));
    console.log('Max error in sample:', Math.max(...errors.map(e => Math.abs(e.error))));*/
    // Find extrema with better initial guess
    let extrema;
    try {
        extrema = this.findAlternatingExtrema(targetFunc, cfApprox, a, b);
        console.log('Found extrema:', extrema);
    } catch (error) {
        console.error('Extrema finding failed:', error);
        // Use evenly spaced points as fallback
        extrema = Array.from({ length: numNodes }, (_, k) => {
            const x = a + k * (b - a) / (numNodes - 1);
            return { x: x, y: errorFunc(x) };
        });
    }
    const nodes = extrema.map(e => e.x);
    const maxError = Math.max(...extrema.map(e => Math.abs(e.y)));
    return {
        coeffs: cfCoefficients,
        nodes: nodes,
        cfApprox: cfApprox,
        maxError: maxError
    };
}
initializeL2RemezNodes(targetFunc, a, b, numNodes) {
		const l2A = remMath.polynomialL2Approximation(targetFunc, numNodes-2, a, b);
		const lsApprox = l2A.lsApprox;
		let extrema = this.findAlternatingExtrema(targetFunc, l2A.lsApprox, a, b, numNodes);
		const nodes = extrema.map(function(e) { return e.x; });
		return {
			coeffs: l2A.coeffs, 
			nodes: nodes, 
			lsApprox: l2A.lsApprox
		};
	}
initializeDiscreteRemezNodes(targetFunc, a, b, numNodes, gridDensity = 100) {
        const degree = numNodes - 2;
        const numGridPoints = Math.max(1000, gridDensity * numNodes);
        const gridPoints = Array.from({ length: numGridPoints }, (_, i) => 
            a + i * (b - a) / (numGridPoints - 1)
        );
        const targetValues = gridPoints.map(x => targetFunc(x));
        const discreteResult = this.solveDiscreteRemez(gridPoints, targetValues, degree);
        const extrema = this.findDiscreteExtremaFromSolution(
            gridPoints, 
            targetValues, 
            discreteResult.approxValues, 
            numNodes
        );
        const nodes = extrema.map(e => e.x);
        return {
            coeffs: discreteResult.coeffs,
            nodes: nodes,
            discreteApprox: discreteResult.approxFunc,
            maxError: Math.max(...extrema.map(e => Math.abs(e.error)))
        };
    }
findReferenceSimple(errorFunction, coefficients, currentReference) {
    const coarseSteps = parseInt(document.getElementById('bruteSteps').value);
    const refinementSteps = 10;
    const refinementIterations = 5;
    const eps = 0.000001/n;
    let newReference = [];
    for (let k = 0; k < currentReference.length; k++) {
        const left = (k==0) ? aP.intervalStart : currentReference[k-1].x + eps;
        const right = (k==currentReference.length-1) ? aP.intervalEnd : currentReference[k+1].x;
        // Safety check: ensure valid interval
        if (left >= right || !isFinite(left) || !isFinite(right)) {
            console.warn(`Invalid interval at k=${k}: [${left}, ${right}]`);
            newReference.push({...currentReference[k], originalIndex: k});
            continue;
        }
        // Initial coarse search
        let extremum = currentReference[k];
        let delta = (right - left) / coarseSteps;
        // Safety check: ensure valid delta
        if (delta <= 0 || !isFinite(delta)) {
            console.warn(`Invalid delta at k=${k}: ${delta}`);
            newReference.push({...extremum, originalIndex: k});
            continue;
        }
        // Use step counter instead of relying only on currentX <= right
        for (let step = 0; step <= coarseSteps; step++) {
            const currentX = left + step * delta;
            if (currentX > right) break; // Additional safety
            const currentY = errorFunction(coefficients, currentX);
            if (!isFinite(currentY)) continue; // Skip invalid results
            if ((currentReference[k].y > 0 && currentY > extremum.y) || 
                (currentReference[k].y < 0 && currentY < extremum.y)) {
                extremum = {x: currentX, y: currentY};
            }
        }
        // Refinement phase
        for (let i = 0; i < refinementIterations; i++) {
            const refinementLeft = Math.max(left, extremum.x - delta);
            const refinementRight = Math.min(right, extremum.x + delta);
            delta = (refinementRight - refinementLeft) / refinementSteps;
            // Safety check for refinement delta
            if (delta <= 0 || !isFinite(delta)) break;
            // Use step counter for refinement too
            for (let step = 0; step <= refinementSteps; step++) {
                const currentX = refinementLeft + step * delta;
                if (currentX > refinementRight) break;
                const currentY = errorFunction(coefficients, currentX);
                if (!isFinite(currentY)) continue;
                if ((currentReference[k].y > 0 && currentY > extremum.y) || 
                    (currentReference[k].y < 0 && currentY < extremum.y)) {
                    extremum = {x: currentX, y: currentY};
                }
            }
        }
        newReference.push({...extremum, originalIndex: k});
    }
    return newReference;
}
findReferenceParabolic(calculateError, optimizationCoefficients, currentReferencePoints) {
    const maxInterpolationIterations = parseInt(document.getElementById('parabolicSteps').value);
    const minimumPointSeparation = 0.01;
    const convergenceThreshold = 1e-10;
    const epsilon = 1e-12;
    const goldenRatio = 0.618033988749;
    // Enhanced parabolic interpolation with better numerical stability
    function interpolateParabola(x0, x1, x2, y0, y1, y2) {
        // Use more numerically stable form
        const h1 = x1 - x0;
        const h2 = x2 - x1;
        const d1 = (y1 - y0) / h1;
        const d2 = (y2 - y1) / h2;
        const denominator = h1 + h2;
        if (Math.abs(denominator) < epsilon || Math.abs(d2 - d1) < epsilon) {
            return (x0 + x2) / 2; // Fallback to midpoint
        }
        const a = (d2 - d1) / denominator;
        if (Math.abs(a) < epsilon) {
            return (x0 + x2) / 2; // Nearly linear, use midpoint
        }
        // Compute vertex of parabola
        const vertex = x1 - d1 / (2 * a) - h1 / 2;
        return vertex;
    }
    // Adaptive bracket width calculation
    function calculateInitialBracket(pointIndex, currentPoints) {
        const baseWidth = 0.1; // Default bracket width
        let adaptiveWidth = baseWidth;
        if (pointIndex > 0) {
            const leftSpacing = currentPoints[pointIndex].x - currentPoints[pointIndex - 1].x;
            adaptiveWidth = Math.min(adaptiveWidth, leftSpacing * 0.3);
        }
        if (pointIndex < currentPoints.length - 1) {
            const rightSpacing = currentPoints[pointIndex + 1].x - currentPoints[pointIndex].x;
            adaptiveWidth = Math.min(adaptiveWidth, rightSpacing * 0.3);
        }
        return Math.max(adaptiveWidth, minimumPointSeparation * 2);
    }
    // Enhanced caching with LRU eviction
    class ErrorCache {
        constructor(maxSize = 1000) {
            this.cache = new Map();
            this.maxSize = maxSize;
        }
        get(x) {
            const key = x.toFixed(12); // Round to avoid floating point issues
            if (this.cache.has(key)) {
                const value = this.cache.get(key);
                this.cache.delete(key);
                this.cache.set(key, value); // Move to end (most recent)
                return value;
            }
            const value = calculateError(optimizationCoefficients, x);
            if (this.cache.size >= this.maxSize) {
                const firstKey = this.cache.keys().next().value;
                this.cache.delete(firstKey);
            }
            this.cache.set(key, value);
            return value;
        }
    }
    const errorCache = new ErrorCache();
    // Main optimization loop
    let optimizedReferencePoints = [];
    for (let pointIndex = 0; pointIndex < currentReferencePoints.length; pointIndex++) {
        const currentPoint = currentReferencePoints[pointIndex];
        // Calculate boundaries
        const minAllowedX = (pointIndex === 0) ? 
            aP.intervalStart : 
            optimizedReferencePoints[pointIndex - 1].x + minimumPointSeparation;
        const maxAllowedX = (pointIndex === currentReferencePoints.length - 1) ? 
            aP.intervalEnd : 
            currentReferencePoints[pointIndex + 1].x - minimumPointSeparation;
        // Initialize with adaptive bracket
        const bracketWidth = calculateInitialBracket(pointIndex, currentReferencePoints);
        let leftX = Math.max(minAllowedX, currentPoint.x - bracketWidth);
        let midX = currentPoint.x;
        let rightX = Math.min(maxAllowedX, currentPoint.x + bracketWidth);
        // Ensure proper ordering and spacing
        if (rightX - leftX < 2 * minimumPointSeparation) {
            const center = (leftX + rightX) / 2;
            leftX = Math.max(minAllowedX, center - minimumPointSeparation);
            rightX = Math.min(maxAllowedX, center + minimumPointSeparation);
            midX = center;
        }
        let bestX = midX;
        let bestY = errorCache.get(midX);
        let iterationCount = 0;
        let consecutiveSmallSteps = 0;
        let lastStepSize = Infinity;
        // Target direction: maximize absolute error
        const targetSign = Math.sign(currentPoint.y);
        while (iterationCount < maxInterpolationIterations) {
            const leftY = errorCache.get(leftX);
            const midY = errorCache.get(midX);
            const rightY = errorCache.get(rightX);
            // Try parabolic interpolation
            let newX = interpolateParabola(leftX, midX, rightX, 
                                         leftY * targetSign, midY * targetSign, rightY * targetSign);
            // Clamp to valid range
            newX = Math.max(minAllowedX, Math.min(maxAllowedX, newX));
            // Avoid getting stuck at boundaries
            if (newX === minAllowedX || newX === maxAllowedX) {
                newX = (leftX + rightX) / 2;
            }
            const stepSize = Math.abs(newX - bestX);
            // Check convergence
            if (stepSize < convergenceThreshold) {
                consecutiveSmallSteps++;
                if (consecutiveSmallSteps >= 3) break;
            } else {
                consecutiveSmallSteps = 0;
            }
            // Detect oscillation or stagnation
            if (stepSize > lastStepSize * 0.9 && iterationCount > 3) {
                // Switch to golden section if parabolic isn't converging
                const range = rightX - leftX;
                if (newX > midX) {
                    newX = midX + goldenRatio * (rightX - midX);
                } else {
                    newX = midX - goldenRatio * (midX - leftX);
                }
                newX = Math.max(minAllowedX, Math.min(maxAllowedX, newX));
            }
            const newY = errorCache.get(newX);
            // Update best point if we found improvement
            if (Math.abs(newY) > Math.abs(bestY)) {
                bestX = newX;
                bestY = newY;
            }
            // Update bracket based on function behavior
            if (newX < midX) {
                if (Math.abs(newY) > Math.abs(midY)) {
                    rightX = midX;
                    midX = newX;
                } else {
                    leftX = newX;
                }
            } else if (newX > midX) {
                if (Math.abs(newY) > Math.abs(midY)) {
                    leftX = midX;
                    midX = newX;
                } else {
                    rightX = newX;
                }
            }
            // Ensure bracket doesn't collapse
            if (rightX - leftX < 2 * convergenceThreshold) {
                const expansion = Math.max(convergenceThreshold * 10, (maxAllowedX - minAllowedX) * 0.01);
                const center = (leftX + rightX) / 2;
                leftX = Math.max(minAllowedX, center - expansion);
                rightX = Math.min(maxAllowedX, center + expansion);
                midX = center;
            }
            lastStepSize = stepSize;
            iterationCount++;
        }
        // Final adjustment for minimum separation
        if (optimizedReferencePoints.length > 0) {
            const minRequiredX = optimizedReferencePoints[optimizedReferencePoints.length - 1].x + minimumPointSeparation;
            if (bestX < minRequiredX) {
                bestX = minRequiredX;
                bestY = errorCache.get(bestX);
            }
        }
        optimizedReferencePoints.push({
            x: bestX, 
            y: bestY,
            iterations: iterationCount,
            converged: consecutiveSmallSteps >= 3 || iterationCount < maxInterpolationIterations
        });
    }
    console.log("Optimized Reference Points:", optimizedReferencePoints);
    return optimizedReferencePoints;
}